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Abstract. The diffusion of light atoms at a crystal surface is considered. Numerical
experiments on diffusion at crystal surfaces of different crystallographic orientation demonstrate
the diffusion to be suppressed by the clusterization process. If bound states of two adatoms do
not exist at the surface, a quasi-two-dimensional Wigner crystal is formed, resulting thus in a
drastic decrease in the diffusion coefficient.

1. Introduction

The theoretical treatment of the diffusion of light atoms adsorbed at a crystal surface (so-
called adatoms) revealed that in the case of a repulsive short-range interaction between
the adatoms the existence of their bound states is defined by the form of the long-range
interaction [1, 2]. The latter in its turn depends heavily on the crystal surface orientation
about the crystallographic axes. For some cuts this interaction may be repulsive in nature
and no bound states of adatoms arise. For other cuts the interaction may change its sign
and this inevitably leads to clustering of adatoms with decreasing temperature, as a result
of which a sharp decrease in the diffusion coefficient takes place.

Below the characteristic temperature of clusterizationTc the thermodynamic equilibrium
accords with a large-scale exfoliation into quasi-two-dimensional (2D) phases with high and
low concentrations of adatoms, but such a thermodynamically equilibrium state is practically
unattainable in the event of a slightly covered surface, i.e. for a small value of the ratio
x of the numbers of adsorbed atoms and native atoms furnishing the crystal surface. On
cooling, the system appears in one of the metastable states characterized by the presence of
small clusters of a few adatoms. The initiation of such clusters significantly retards the rate
of relaxation to equilibrium, so such a state is not observable on the real time scale.

An analytical description of the diffusion with a number of small clusters of different
sizes and shapes presents a considerable challenge. Because of this, we have performed
numerical modelling of light-atom diffusion at crystal surfaces.

The results of similar calculations for pure short-range attractive interaction between
adatoms, when the cut orientation is not so vital, have already been published [3, 4].

2. Description of the model

The long-range part of the interaction between adatoms at a metal surface is the elastic
interaction Welas with added indirect interaction via Friedel oscillations in the electron
densityWel .
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The elastic interaction at the (100) cut of a cubic crystal with slight anisotropy has the
form

Welas(ρ) = α
[

3
5 − (X/ρ)4 − (Y/ρ)4

]
d3/ρ3 (1)

whered is the interatomic distance,ρ = (X, Y ) is the 2D vector parallel to the crystal
surface, and the sign of the constantα is given by the sign of the elastic constant combination
2C44 + C12 − C11 [5].

In the case of the (111) cut of a cubic crystal one hasWelas(ρ) = α′d3/ρ3, whereα′ =
constant. In the bulk of the crystal one hasα′ = 0.1α, but at the surface the relationship
may be different.

To be sure, the form of (1) relates to an infinite and not a semi-infinite crystal.
Unfortunately we are not aware of an expression for the Green function for elastic
displacements at the crystal surface. Nevertheless, the translational symmetry break in
the direction perpendicular to the surface must not break the interaction symmetry at the
surface without surface reconstruction. One can consider the isotropic elastic interaction at
the (111) cut of a cubic crystal as an example.

The calculations for semi-infinite crystals with weak cubic anisotropy are reduced to
derivation of a new, more complicated expression for the quantitiesα and α′ in terms of
crystal elastic constants.

The energy of the indirect interaction between adatoms through the Friedel oscillations
in the electron density depends strongly upon the Fermi surface shape. Let us begin with
the case when the underfilled electron surface band is absent. The fall-off of oscillations in
the direction given by a unit vectorn = ρ/ρ is derived from an extreme size of the Fermi
surface along this direction 2kF (n). If the valuekz = 0 (kz is the wavevector component
perpendicular to the crystal surface) corresponds to the sole extreme size, then the interaction
through the Friedel oscillations in the electron density diminishes asρ−5:

Wel(ρ) = W0 cos
[
2kF (n)ρ

]
d5/ρ5 W0 = constant. (2)

This is concerned with a small value of the matrix element of the defecton–electron
interaction near a given extreme. This was shown by Law and Kohn [6] for the spherical
Fermi surface. If the extreme size of the Fermi surface is related tokz = 0, then one has

Wel(ρ) = W0 cos
[
2kF (n)ρ

]
d3/ρ3 (3)

as in the bulk [2]. In such a case the Fermi surface is of the form of several pockets or a
corrugated cylinder.

For the Fermi surface in the form of a noncorrugated cylinder with the axis perpendicular
to the crystal surface the interaction energy is proportional toρ−2 [6].

The Fermi surface is always corrugated in a real crystal. This is why, for small
corrugation (kF � kmax

F − kmin
F , kmax

F and kmin
F being minimum and maximum radii of

the corrugated cylinder) an intermediate asymptoticWel(ρ) ∝ ρ−2 should be observed in
the range(2kF )−1 � ρ � [2(kmax

F − kmin
F )]−1, while in the rangeρ � [2(kmax

F − kmin
F )]−1

the interaction energy appears to be proportional toρ−3.
If there exists a partially occupied surface electron energy band, then the interaction

energy falls off asρ−2 [6].
The constantsW0 andα are of the same order of magnitude (102–103 K) for all cases.
We considered the case of interaction through Friedel oscillations in the electron density

described by (3), but if one hasWel ∝ ρ−5 then this term falls off with distance much faster
than the elastic interaction, so one can say that the long-range interaction between the
adatoms is only caused by the elastic interaction.
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Due to the changing sign of bothWelas and Wel ((1) and (3), respectively) one can
conclude that the bound states of adatoms inevitably arise at the (100) cut as the temperature
decreases, while their initiation at the (111) cut depends on the sign of the constantα′ and
on the relationship betweenα′ andW0. In the caseα′ > 0 andα′ > W0, bound states of
adatoms must be absent.

When performing the numerical simulation we restricted ourselves to those two cuts.
At the (100) cut the equilibrium positions of adsorbed atoms form a square lattice at the
crystal surface. We considered a pattern (100× 100) of this lattice periodically extended in
space, with 100 adatoms withinx = 0.01. The interaction between the adatoms is described
by the couple potential

Wij =
{
B

[
3/5 − (

x̃ij /ρ̃ij

)4 − (
ỹij /ρ̃ij

)4] + (1 − B) cos
(
γ ρ̃ij

)}/
ρ̃3

ij (4)

whereρ̃ij is the radius vector with integer coordinates, which joins two lattice points, and
γ = 0.75 is a coefficient. With such a potential the quantityB defines a relative contribution
of the elastic interaction between defects, and the temperature is measured in the units of
α/B.

At the (111) cut the equilibrium positions of adatoms form a plane lattice with a rhombic
elementary cell whose sides are 21/2 times the sides of a square cell at the (100) cut and
form an angle of 60◦. A pattern of 100× 100 elementary cells periodically extended in
space was considered with 100 adatoms within. The interaction potential has the form

Wij =
{

0.1B + (1 − B) cos
(

21/2γ ρ̃ij

)}/(
21/2ρ̃ij

)3
(5)

where againρ̃ij is the dimensionless vector (expressed through the lattice constants) joining
the oblique lattice points. With the use of (4) and (5) one can find the adatom potential
energy at any lattice point.

To examine the dynamic behaviour of the adatoms we used the Metropolis scheme of
the Monte Carlo method [7], with a random sampling of an adatom and a neighbouring
lattice point to which this adatom can move. An adatom cannot transfer to an occupied
lattice point.

In the case of small concentration of light adatoms their characteristic temperature of
clusterization falls within the temperature range where the adatom quantum jump diffusion
is essential. Such a jump from anith occupied point to a neighbouringj th vacant point is
accompanied by the change of the given adatom potential energy in the field of all other
adatoms

ξij =
∑
m6=i

(
Wjm − Wim

)
(6)

where the summation is performed over all particles except the jumping one.
Let J0 be the tunnelling matrix element for the adatom transition between neighbouring

equivalent positions in the absence of disordering, i.e. atξij = 0.
Provided the condition|ξij | � J0 is satisfied, the transition is caused by either interaction

with conduction electrons or one-phonon processes. In order of magnitude the probability
of the transition followed by the electron scattering is [8]

ωel ∼
(
J 2

0 /h̄ξij

)/[
exp

(
ξij /T

) − 1
]

(7)

whereh̄ is the Planck constant.
The probability of the processes accompanied by phonon irradiation or absorption in

order of magnitude approximates to

ωph ∼
(
J 2

0 Ẽξij /θ
3h̄

)[
exp

(
ξij /T

) − 1
]

(8)
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whereẼ is an atomic scale energy andθ is the Debye temperature.
Equations (7) and (8) comprise the full transition probability. The full probability

depends slightly onξij at ξij < 0 and decreases exponentially rapidly atξij > 0. This is
why the transition probability can be introduced with good accuracy in the form

ωij =
{

1 if ξij 6 0

exp
(−ξij /T

)
if ξij > 0.

(9)

To find the diffusion coefficient we use the Einstein equation

D = T µ (10)

whereµ is the mobility, i.e. the proportionality coefficient between the directed movement
velocity of adatoms and the applied force. By creating a slight potential gradient along
one of the crystallographic axes and by adding it to the quantityξij , we realize a random
sampling of initial coordinates of the adatoms. After this the system is annealed at a
given temperature, i.e. the relaxation to a stationary state takes place. Actually, due to
the interaction between adatoms, their reciprocal positions are not random in general. An
approach to the stationary regime is monitored by the total potential energy of adatoms.

After reaching the stationary state the flux of particles generated by the applied force
is found. The mobility is defined as the ratio of the flux to the force. The magnitude of
the forceF holds as long as the inequalityFd � T is valid. This is necessary because the
potential gradient must not change the probability of adatom transition to the neighbouring
point.

The choice of temperature dependence of the jump probability in the form given by
(9) implies it to be normalized on the basis of probability of the jump of noninteracting
adatoms. Therefore the computer simulation results in the ratioD/D0 (here D0 is the
diffusion coefficient of noninteracting adatoms) and not in the diffusion coefficientD itself.

3. Discussion of results

3.1. Bound states

In figure 1 one can see the temperature dependences of the ratioD/D0 for the presence of
bound states of adatoms at the surface. What all the dependences have in common is that
on lowering the temperature a drastic decrease in the magnitude of the ratioD/D0 comes
about, from a value close to unity (at high temperature) to a near-zero value (for the cluster
region). It was found in the preceding papers by the present authors [10–12] that

D/D0 = [1 + βx exp(w/T )]−1 (11)

whereβ ∼ 1, andw is the characteristic (averaged over the clusters) specific bound energy
of adatoms in the cluster. The characteristic temperature of clusterization is

Tc = 2/| ln x|. (12)

We approximated the results obtained by the dependence

D/D0 = a[1 + b exp(c/T )]−1 (13)

wherea, b, andc were free parameters. The parametera, as we might expect, proved to be
equal to unity with an accuracy of several per cent despiteb ∼ 10−2 being calculated with
a large error. Shown in table 1 are the values ofc and of the clusterization temperature
Tc, both found theoretically with the use of (12) and calculated by model experiments for
D/D0 = 0.5 for (100) and (111) cuts and for different values ofB.
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(a)

(b)

(c)

Figure 1. Temperature dependence of the diffusion coefficient of adatoms: (a) for the (100)
cut, B = 0, 8; (b) for the (111) cut,B = 0.8; (c) for the (100) cut,B = 0.5; (d) for the (111)
cut, B = 0.5.
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Table 1. The values of specific bound energy and clusterization temperature.

N Cut B c T calc
c T

exp
c

1 (100) 0.8 0.23 0.050 0.051
2 (111) 0.8 0.014 0.0029 0.0051
3 (100) 0.5 0.039 0.0085 0.0097
4 (111) 0.5 0.17 0.036 0.038

The error in quantityD/D0 displayed in figure 1 is caused by a spread inD/D0

values at a given temperature and for different initial random distributions of defects, i.e.
for different realizations. Such a spread is an outcome of a limitation on the size of the
surface pattern under consideration. This result should be taken into account in experimental
investigations as well. When scanning tunnelling microscopy is used to seek the adatom
diffusion coefficient, a limited part of the surface is scanned; therefore one has to average
over different parts of the surface or differential initial distributions of the adatoms.

The diminution of the ratioD/D0 is due to the clustering of defects and this is
demonstrated by figure 2, where the distribution of adatoms at the crystal surface forT > Tc

andT < Tc is shown. AtT � Tc, the correlations in the positions of adatoms are very small,
if any (figure 2(a)). AtT � Tc, small clusters arise, their shape and size being defined by
the interaction (the value ofB) and by the crystal surface cut orientation (figure 2(b)–(e)).
A change in the constantB magnitude may be variously manifested at different cuts. If
B = 0.5, the nearest neighbours in the cluster are located at intervals of one lattice point
for both (100) and (111) cuts (figure 2(b) and (d)). With increasing magnitude ofB up to
B = 0.8, the adatoms are at nearest points at the (100) cut (figure 2(c)), whereas the cluster
structure appears to be looser at the (111) cut (figure 2(e)). This is due to anisotropy and
the oscillating nature of the interaction as well as to a difference in parameters of the lattice
formed by equilibrium positions of the adatoms at different crystal cuts.

It should be noted that the occurrence of chainlike clusters in [010] and [001] directions
at the (100) cut is caused by the anisotropy of the elastic interaction between adatoms.
Somewhat similar chains of indium atoms arose at the (100) cut of Cu in first-principles
numerical calculations within the framework of the microscopic model [13].

Owing to a low specific bound energy small clusters become unstable and one can see
the formation of one large cluster (figure 2(f)).

The results of numerical calculations shown in figure 2 allow one to see that the number
of free (non-clusterized) adatoms is small atT � Tc. Equation (11) has been derived under
the assumption that the main contribution to the diffusion is due to non-clusterized particles
whose concentration is exponentially small atT � Tc. What actually happens is that the
cluster mobility is a non-zero quantity, which depends on the cluster shape and number of
particles within and is of an activating nature [14, 15]. In the modelling performed both
contributions were taken into account.

Indeed, processes in which one of the adatoms does not break free from its cluster but
moves along the cluster periphery in the diffusion direction are allowed. After this, another
atom of this cluster does the same, etc. As a result, the whole cluster can transfer to another
crystal region in the absence of adatom ‘evaporation’ and ‘condensation’ processes.
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(a) (b)

(c) (d)

(e) (f )

Figure 2. The distribution of adatoms at the crystal surface: (a) for the (100) cut,B = 0.8,
T = 0.3; (b) for the (100) cut,B = 0.5, T = 0.001; (c) for the (100) cut,B = 0.8, T = 0.03;
(d) for the (111) cut,B = 0.5, T = 0.005; (e) for the (111) cut,B = 0.8, T = 0.001; (f) for
the (100) cut,B = 0.5, T = 0.012.
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Figure 3. Temperature dependence of the adatom diffusion coefficient in the absence of bound
states for the (111) cut,B = 1.

3.2. The Wigner crystal

The caseB = 1 for the (111) cut, when bound states of adatoms do not occur because of
the pure repulsive nature of the interaction between adatoms, is considered separately. The
pure repulsive interaction affects the diffusion at significantly lower temperature than in the
case of the presence of bound states.

Let us estimate the characteristic temperature below which the 2D Wigner crystal of
adatoms is formed. Since the elastic interaction between adatoms falls off with distance
as ρ−3 (1), its energy at mean distances〈ρ〉 ∼ x−1/2d comprisesT ∗ ' 0.1(x/2)3/2B,
i.e. it may be estimated as 4.4 × 10−5 for B = 1 and x = 2 × 10−2/31/2. A stronger
concentration dependence of the quantityT ∗ in comparison with that ofTc should be noted.
The temperature dependence of the diffusion coefficient in this instance is shown in figure 3.
By the use of its approximation in the form given by (13) one findsc = 2.2 × 10−5.

It is just at the temperatureT ∼ 10−5 that the value ofD/D0 begins to depart from
unity, and atT � T ∗, a plane triangular lattice of adatoms is formed, similar to the lattice
of Abrikosov filaments at a superconductor surface. A view of such a 2D Wigner crystal is
shown in figure 4. The crystal formation gives rise to adatom localization and to exponential
decrease in the quantityD/D0.

4. Conclusions

(i) The potential energy of the interaction of defects at the metal surface through the Friedel
oscillations in the electron density falls off with a distance between defects asρ−p (the
exponentp being equal to 2, 3, or 5 depending on the Fermi surface shape).
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Figure 4. The 2D Wigner crystal of adatoms.

(ii) If bound states of defects exist, the clusterization of defects takes place, resulting in
drastic changes in diffusivity.

(iii) The shape of the clusters arising at the surface essentially depends on the surface
orientation with respect to crystallographic axes, which is governed by the nature of
anisotropy of the long-range interaction between adatoms.

(iv) If bound states of adatoms at the crystal surface are absent the 2D Wigner crystal
is formed in the range of low temperatures, resulting in an essential decrease in surface
diffusivity as well.
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